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Experimentally determined networks are susceptible to errors,
yet important inferences can still be drawn from them. Many
real networks have also been shown to have the small-world
network properties of cohesive neighborhoods and short aver-
age distances between vertices. Although much analysis has
been done on small-world networks, small-world properties
have not previously been used to improve our understanding of
individual edges in experimentally derived graphs. Here we
focus on a small-world network derived from high-throughput
(and error-prone) protein–protein interaction experiments. We
exploit the neighborhood cohesiveness property of small-world
networks to assess confidence for individual protein–protein
interactions. By ascertaining how well each protein–protein
interaction (edge) fits the pattern of a small-world network, we
stratify even those edges with identical experimental evidence.
This result promises to improve the quality of inference from
protein–protein interaction networks in particular and small-
world networks in general.

Until recently, network modeling often assumed the topol-
ogy was either a random graph or a regular lattice. In

recent years it has been shown that neither of these options
capture the properties of most real networks well, and new
graph models have been proposed. One such model, the
small-world networks of Watts and Strogatz (1), has inspired
a plethora of new research directions (2). A small-world
network is one in which the length of the shortest path between
any pair of vertices tends to be small (short characteristic path
length), but also with densely connected local neighborhoods
(high clustering coefficient) (1). The former property is held
by random graphs but not regular lattices, whereas the latter
property is held by regular lattices but not random graphs,
placing small-world networks between these two extremes.
Real networks shown to be small-world networks include the
Internet (3), scientific collaboration networks (4), neural
connections in Caenorhabditis elegans (1), the English lexicon
(5), metabolic networks (6), and protein–protein interaction
networks (7, 8). It is not surprising that so many real networks
are small world, because Watts and Strogatz (1) showed that
as you interpolate from either extreme (random or lattice), the
graph quickly becomes small world, so that real graphs that are
neither completely ordered nor completely random will often
be small-world graphs. Properties of small-world networks
have been investigated (9–12), various models for their origin
have been formulated (13–16), and methods for separating
cohesive regions have been devised (17, 18). Other network
properties studied in recent years that are also common in real
networks include scale-free (or power-law) degree distribution
(3, 19–22), community structure (18), and hierarchy (23).
Although much analysis has been done on these new network
topologies, topological network properties have not previously
been used to assess reliability of individual edges in an
experimentally derived network.

Biological networks such as protein–protein interaction net-
works, metabolic networks, and gene regulatory networks are
experimentally derived with substantial false-positive and false-

negative errors (24, 25). Here we consider in detail a network of
protein–protein interactions derived from high-throughput,
error-prone yeast two-hybrid (Y2H) studies (26, 27). These data
can be depicted graphically with vertices representing proteins
and edges (connecting lines) representing interactions between
them. Estimates of error rates in Y2H studies range from 50%
to 80% (24, 25, 27, 28). Although protein interaction networks
have been used to predict protein function (26, 27, 29–32),
experimental errors necessarily affect the quality of such
inference.

Others have assessed edges in protein–protein interaction
networks by using homology (25), gene expression (33), and
network topology (considering the number of neighbors with
only one neighbor) (34). Each of these methods used threshold
values for their assessment, essentially classifying edges as either
high or low confidence. We want to estimate the probability that
each edge in the network represents a real interaction, or ‘‘true
edge.’’ In addition to direct evidence about the veracity of each
edge, we want to see whether a property of the overall topology
of the true graph can be exploited to locally assess edges in the
experimental graph. The neighborhood cohesiveness of a net-
work is an average of a local measure, so it is a natural first choice
of a network property to use. We incorporate a measure of
neighborhood cohesiveness around the edge as an indication of
how well the edge fits the expected topology of protein–protein
interaction networks.

Our strategy is as follows. First, we define four variants of a
mutual clustering coefficient, Cvw, to measure the neighborhood
cohesiveness around an edge in a graph. Second, we show that
for our network of protein–protein interactions, true edges
(interactions) have distinctly higher Cvw than false-positive
edges, as expected if true edges form a small-world network
whereas false-positive edges form a more random network.
Third, we examine the degree to which the neighborhood
cohesiveness of each edge is consistent with a small-world
network and show that this measure provides a way to score
individual edges according to their likelihood of being true.
Fourth, we rank protein interactions according to each variant of
Cvw and determine the best definition of Cvw for protein–protein
interaction networks. Fifth, we provide a probabilistic frame-
work for integrating diverse types of evidence to better assess
confidence for observed high-throughput interactions. Finally,
we predict interactions for which we have no experimental
evidence and show that upon further investigation a remarkable
number of these predictions have already been noted in the
biomedical literature.

Mutual Clustering Coefficient
Watts and Strogatz (1) defined a clustering coefficient to give a
global measure of the cohesiveness or ‘‘cliquishness’’ of a graph.
Small-world networks have high clustering coefficients (1). The
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cliquishness of the neighborhood around an individual edge
should therefore be an indication of how well this edge fits the
pattern of a small-world network. Quantifying this seems
straightforward. Indeed, the clustering coefficient of a graph was
originally defined as the average of a local measurement: The
clustering coefficient of a graph defined by Watts and Strogatz
used the average value of Cv, a measure of the neighborhood
cohesiveness around each vertex v. However, we want to quantify
neighborhood cohesiveness around individual edges rather than
vertices.

The high clustering coefficients of small-world networks in-
dicate that neighbors of a given vertex are more likely to have
edges between them than would be expected in a random graph.
Such edges between neighbors of a vertex form triangles cor-
nered at that vertex. This preponderance of triangles in a
small-world network means that an edge is likely to be a side of
more triangles than would be expected in a random graph.
Therefore, for an edge vw between vertices v and w, a neighbor
of vertex v is more likely to have an edge to w if the edge is from
a small-world graph (illustrated in Fig. 1) than if it is from a
random graph. Such ‘‘mutual neighbors’’ of the two endpoints
serve to corroborate the edge.

We want to define a mutual clustering coefficient Cvw for a
pair of vertices v and w to give a measure of such corroboration.
We want this measure to be independent of the existence of an
edge between v and w for a leave-one-out approach, so that
direct experimental evidence about an interaction between
two proteins does not inf luence our assessment of the neigh-
borhood of the two proteins. We apply this measure not only
to edges (vertex pairs with supporting evidence) but to any pair
of vertices so we can form hypotheses about missing edges. In
defining such a measure, we want to count the number of
triangles in which this pair of vertices might be included, but
the proper normalization factor (to account for the number
of neighbors of the two proteins) is uncertain. Optimal nor-
malization may depend on other aspects of the network
topology, such as whether the small-world network also ex-
hibits a scale-free topology, i.e., has a distribution of degree
(number of edges to each vertex) that follows a power law
(19, 21).

We consider four alternative definitions of Cvw. In each of
these definitions, N(x) represents the neighborhood of a vertex
x, and Total represents the total number of proteins in the
organism. Given fixed neighborhood sizes �N(v)� and �N(w)�,
these coefficients all increase with increasing overlap between
the neighborhoods. For two vertices v and w, we define these
measures of mutual clustering coefficient:

Jaccard Index: Cvw � �N�v� � N�w�� � �N�v� � N�w��.

Meet�Min: Cvw � �N�v� � N�w�� � min��N�v��, �N�w���.

Geometric: Cvw � �N�v� � N�w��2 � ��N�v����N�w���.

Hypergeometric:

Cvw � �log �
i��N�v� � N�w��

min��N�v��,�N�w��� ��N�v��
i � � �Total��N�v��

�N�w�� � i �
�Total

�N�w���
.

The first three definitions all have as their numerator the number
of triangles that contain the edge, although each definition uses
a different normalization factor. The Jaccard index (35) is a
natural and common graph-theoretic measure that has been
used for hierarchical clustering (36), but it is inappropriate if one
of the two endpoints of the edge we are considering has a large
neighborhood. For example, if the two endpoints of an edge
share 10 common neighbors, we might desire more significance
if one endpoint has only these 10 neighbors and the other
endpoint has 200 neighbors than if each endpoint has 105
neighbors (the union of the two neighborhoods is of size 200 in
either case). Such situations can be expected in scale-free
networks such as that of protein–protein interactions (21, 22).
The meet�min coefficient removes this bias at the expense of
discarding information about the larger neighborhood size. This
measure is similar to the topological overlap defined by Ravasz
et al. (23). The principal difference is that our measure is
independent of any evidence of an edge between the two nodes
measured (see below). The geometric coefficient is a compro-
mise between the Jaccard and meet�min coefficients and is
similar to the measure of signature overlap used by Ihmels
et al. (37).

The cumulative hypergeometric distribution is frequently used
to measure cluster enrichment (38) and significance of co-
occurrence (39). The summation in the hypergeometric coeffi-
cient can be interpreted as a p value, the probability of obtaining
a number of mutual neighbors between vertices v and w at or
above the observed number by chance, under the null hypothesis
that the neighborhoods are independent, and given both the
neighborhood sizes of the two vertices and the total number of
proteins in the organism. The hypergeometric coefficient is then
defined to be the negative log of this p value.

To avoid zero denominators in the first three coefficients, we
included the edge vw in computation of Cvw, regardless of direct
experimental evidence for that edge. For the hypergeometric
coefficient, we excluded the edge vw. This makes Cvw (for all
definitions) independent of the direct experimental evidence for
the edge we are assessing. To expedite computation of the
hypergeometric coefficient, a numerical approximation of the
Gamma function was used to calculate factorials (40) so that
computation time was not an issue.

Protein–Protein Interaction Data
We derived our protein–protein interaction network from high-
throughput, error-prone Y2H studies (26, 27) obtained from
CuraGen’s PathCalling Yeast Interaction Database (ref. 26;
http:��portal.curagen.com). Such interactions between proteins
are known to form a small-world network (7, 8). We chose to
focus on data from Y2H studies because they are particularly
error-prone and thus stand to maximally benefit from a better
assessment of individual interactions. For validation, we used the
more reliable conventional evidence (e.g., coimmunoprecipita-
tion) also obtained from the PathCalling database. A total of
6,000 known and hypothetical Saccharomyces cerevisiae proteins

Fig. 1. Cohesive neighborhoods in a small-world network. (a) The neighbors
of a vertex are more likely to be neighbors of each other (forming triangles,
shown with dotted lines) in a small-world network than in a random graph. (b)
Equivalently, the two vertices of an edge are more likely to have neighbors in
common (also forming triangles).
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were used, of which 1,658 have some type of evidence of
interactions with another protein.

To validate predictions of interacting pairs of proteins
for which there is no evidence in the PathCalling database,
we used Incyte Genomics’ Yeast Proteome Database (ref. 41;
www.incyte.com�proteome), which is a more comprehensive,
biomedical literature-derived database.

Correlation Between Cvw and Validity of Interactions
To determine whether there is a correlation between each
definition of Cvw and true edges, we examined the Y2H network
described above. As shown in Fig. 2, for each of these definitions,
the average Cvw of interactions found by high-confidence con-
ventional studies was an order of magnitude higher than the
average Cvw of interactions found only in Y2H studies, which in
turn was several orders of magnitude higher than the Cvw for
pairs of proteins with no evidence of interaction. This finding
implies that biologically relevant edges in our Y2H network have
a distinct distribution of neighborhood cohesiveness that might
be useful in separating true-positive from false-positive edges.
This general pattern was observed for each specification of Cvw,
so that high neighborhood cohesiveness appears to be indepen-
dent of our choice of measures and a property of the true protein
interaction network. The standard errors shown in Fig. 2 suggest
that these differences are significant enough to justify testing the
value of Cvw in adjusting our confidence in the veracity of
individual edges.

Ranking Individual Interactions by Cvw

The four definitions of mutual clustering coefficient Cvw were
used to rank protein–protein interactions observed in Y2H
studies. Fig. 3 describes these results. The fraction of interactions
validated by high-confidence conventional evidence is shown for
groups of protein pairs ranked in decreasing order by Cvw.

If Cvw were unrelated to confidence, the expected fraction
would be constant across all bins with height near zero (�10�4).
The fraction of validated interactions dominates (is higher than)
this line of expectation and is nearly monotonically decreasing
for all specifications of Cvw, providing evidence that all specifi-
cations of Cvw contain information about the validity of edges in
the graph. The hypergeometric curve generally dominates the
others, indicating that for a given rank a larger fraction is

validated. This finding justified our choice to proceed by using
only the hypergeometric specification for Cvw.

Integrating Cvw with Direct Experimental Evidence
Frequently, there is other evidence that bears on confidence in
a particular edge. Such integration of diverse evidence can be
accomplished by using a Bayesian probabilistic framework. In
this case we consider two types of evidence: observed Cvw and the
presence of supporting Y2H evidence. Although we are consid-
ering two types of evidence, the framework we use can be used
for any number of evidence types.

We want to compute the probability of an interaction being
true given the experimental (Y2H) evidence and local network
topology (Cvw). Because we do not know precisely which inter-
actions are true, we use the existence of evidence from high-
confidence conventional experiments as an indication of the
truth of an interaction. Rather than compute the probability that
two proteins truly interact, we instead estimate the probability
that there is high-confidence evidence that the two proteins
interact, having concealed the known status of conventional
evidence for that pair of proteins. This probability should be
correlated with the actual veracity of the protein–protein inter-
action, although it is likely an underestimate given the sparsity
of high-confidence evidence currently available. For simplicity,
we call this a posterior probability score of confidence in the
interaction of two proteins.

We can compute this score (P�) by using Bayes’ rule and the
naı̈ve assumption of independence between evidence types as
follows:

P � � P�Tvw � 1�Cvw, Yvw�

�
P�Cvw�Tvw � 1� � P�Yvw�Tvw � 1� � P�Tvw � 1��i � 0,1 P�Cvw�Tvw � i� � P�Yvw�Tvw � i� � P�Tvw � i�

,

or, by using Bayes’ rule to introduce the term P(Tvw � 1�Yvw) and
some algebraic manipulation,

P � �
P�Cvw�Tvw � 1� � P�Tvw � 1�Yvw��i � 0,1 P�Cvw�Tvw � i� � P�Tvw � i�Yvw�

.

Fig. 2. Average mutual clustering coefficient (Cvw) of interactions found in
both conventional studies and Y2H studies (Conv � Y2H), those found in Y2H
(Y2H only), and all pairs of proteins with neither conventional nor Y2H
evidence supporting their interaction (No evid), for each of four definitions of
Cvw (see text for definitions). Each bar shows the average Cvw minus one
standard error and extends up to the average Cvw plus one standard error.

Fig. 3. Fraction validated by Cvw. For each specification of Cvw, all pairs of
proteins were ranked by Cvw and logarithmically binned. The first bin contains
the 23 � 8 protein pairs with highest Cvw, and subsequent bins contain protein
pairs ranked from (2i�1 � 1) to 2i, inclusive, where i is the label of the bin. The
height of each bin indicates the fraction of interactions validated by conven-
tional evidence. In the case of tied ranks that span bins, the number of
validated interactions within the tied rank is distributed appropriately. (Inset)
A magnification of the bins containing the highest ranked protein pairs. See
text for definitions.
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Here Tvw is an indicator variable for the truth of the interaction
according to high-confidence evidence; Yvw is an indicator
variable for the existence of experimental Y2H data; and Cvw

represents the hypergeometric coefficient. The assumption of
independence between evidence types was used to limit over-
fitting the data.

To estimate P(Cvw�Tvw), the likelihood of observing a partic-
ular value of Cvw for true or false edges, we ‘‘bin’’ edges by Cvw,
initially binning Cvw in equal intervals and then merging bins
containing �10 protein pairs. We then count the proportion of
known true edges in each bin, using the existence of high-
confidence conventional evidence as an indicator for true edges.
P(Tvw�Yvw), the prior probability of the truth of an interaction
given the Y2H evidence Yvw, is estimated by the proportion of all
pairs of proteins with that value of Yvw that have been observed
in an independent (higher reliability) conventional experiment.
The resulting estimate of P(Tvw � 1�Yvw) is almost certainly an

underestimate because many true interactions have not had
confirmation by conventional methods.

We used a leave-one-out approach to compute P� for each
pair of proteins, wherein the likelihoods and priors were ob-
tained by using all edges except the edge of interest. An
indication of our method’s ability to discriminate true interac-
tions from false ones is shown in the receiver operating charac-
teristic (ROC) curve in Fig. 4. Fig. 4 graphically depicts tradeoffs
between true-positive rates and false-positive rates for different
possible thresholds in P�. A curve for a random classifier would
be expected to extend from the origin with a slope of 1. Our
method substantially dominates this expectation. For example,
to achieve a false-positive rate (1-specificity) of 10�5, we have a
sensitivity of 0.117, far above the expected sensitivity of 10�5. It
is also worth noting that the set of edges exceeding the threshold
indicated in Fig. 4 by point d is essentially that set of edges
supported by Y2H data. The ROC curve illustrates the ability of
our method to stratify interactions, i.e., to allow a researcher to
trade lower sensitivity for a lower false-positive rate or vice versa.

Predicting Protein–Protein Interactions Without Direct
Experimental Evidence
The current experimentally derived protein interaction network
is incomplete; that is, many true interactions have not yet been
seen in any study (24, 42). Although our original motivation was
to assess the quality of protein interactions found in high-
throughput studies so that future inferences (such as protein
function prediction) could be improved, we would also like to
predict protein interactions for which we currently have no
evidence. Pairs of proteins with high P� score and no direct
supporting evidence represent predicted interactions.

We view these predicted interactions as a further test of the
validity of our method. Many real edges (interactions) were not
in our training set because not all true edges have been found (or
even tested) and because our training set is based on summaries
of the literature that are unlikely to be complete. These edges
have essentially been deleted from our training graph of protein–
protein interactions, and we would like to learn the lower limit
of how well our method can recover these deleted edges by more
exhaustively searching the literature for our top predictions.

In Table 1 we show the pairs of proteins with P� � 0.25 for
which we had no evidence of interaction (Y2H or conventional).
We examined these interactions further by using the Yeast
Proteome Database. Taken together, there are four known
physical interactions included in our 13 predictions ( p � 10�7).
This p value was calculated by using a cumulative hypergeometric

Fig. 4. ROC curve. The trade-off between sensitivity and specificity for
different cutoffs of posterior probability score (P�) and the expected perfor-
mance of a random classifier (Rand) is shown for useful ranges of false-positive
rate (1-Specificity). (Inset) A magnification of the region of low false-positive
rate most likely to be useful for inference. Note that the curve for a random
classifier is not omitted, but lies very close to the x-axis. Annotated points are
as follows: a, P� cutoff of 0.999 yields 42 true-positives and seven false-
positives; b, P� cutoff of 0.983 yields 63 true-positives and 30 false-positives;
c, P� cutoff of 0.979 yields 135 true-positives and 159 false-positives; d, P�

cutoff of 0.14 yields 317 true-positives and 1,506 false-positives. False-positives
are defined here as protein pairs not observed to interact by high-confidence
experiment in our reference set. Many such protein pairs may, in fact, interact.

Table 1. Predictions of protein–protein interactions

Protein 1 Protein 2 Cvw P� Phys Gen

Fus3p (YBL016W) Kss1p (YGR040W) 35.7 1.00 X
Spa2p (YLL021W) Sph1p (YLR313C) 33.8 0.50 X
Ste7p (YDL159W) Ste11p (YLR362W) 32.0 0.50 X X
Mkk1p (YOR231W) Mkk2p (YPL140C) 31.6 0.50 X
Lsm1p (YJL124C) Lsm8p (YJR022W) 30.8 0.50 X
Rps28bp (YLR264W) Rps28ap (YOR167C) 28.9 0.50
Sno3p (YFL060C) Sno1p (YMR095C) 24.3 0.47
Sno3p (YFL060C) YMR322C 24.3 0.47
Sno1p (YMR095C) YMR322C 24.3 0.47
Ktr3p (YBR205W) YPL246C 22.9 0.47
Vam7p (YGL212W) YHR105W 22.8 0.47
Snz1p (YMR096W) Snz2p (YNL333W) 21.3 0.47 X
Snz3p (YFL059W) Snz1p (YMR096W) 21.3 0.47 X

A list of protein pairs without direct experimental evidence in our training set, ranked by posterior probability
(P�). Mutual clustering coefficient (Cvw) is shown. The existence of physical interaction (Phys) or genetic interac-
tion (Gen) (between genes coding for these two proteins) revealed by further database and literature searches
is indicated by X.
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distribution with the expected probability of success according to
a (conservatively high) estimate of 16 for the global average
number of physical interactions per protein (42). The fraction of
predictions verified by the literature is likely to be an underes-
timate of the fraction of predictions that are true, because not
all interactions have been tested. Interestingly, four known
genetic interactions were observed among the 13 predictions.
This result is surprising, given the scarcity of known genetic
interactions in yeast (�1,200 such interactions are known among
�107 potential interactions) and suggests the possibility of
predicting one interaction type from another. Furthermore,
according to the Saccharomyces Genome Database (ref. 43;
http://genome-www.stanford.edu/Saccharomyces/), in eight of
the nine predicted interactions that did not involve a hypothet-
ical ORF, the two proteins share a common molecular function
or are known to be involved in the same biological pathway (all
except Lsm1p–Lsm8p).

Conclusion
We have described an approach that exploits the local topology
of small-world networks to assess confidence in networks derived
from data containing errors. Such an approach can be used to
improve predictions of protein function that have previously
relied on an ‘‘all-or-nothing’’ view of interactions (26, 27, 29–32)

or to determine the proteins most likely to be members of
particular protein complexes (S. Asthana and F.P.R., unpub-
lished work). This approach is applicable to other small-world
networks that are defined experimentally or by heuristic mea-
sures, e.g., measures of topic similarity between documents that
are used in the field of information retrieval (44). The Bayesian
framework we use here for combining local topology measures
with Y2H evidence will allow integration of diverse measures of
confidence, such as other informative measures of local topology
(e.g., ‘‘interaction generality’’) and other sources of interaction
evidence (31, 32, 34).

The uncertain nature of experimentally or heuristically de-
rived networks necessarily impacts network-derived inference.
We expect that the measures of confidence in network edges
described here will improve inference for protein interaction
networks in particular and small-world networks in general.
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